Accelerating effect of meta substituents in the ester-mediated nucleophilic aromatic substitution reaction

Tetsutaro Hattori,* Ayanobu Takeda, Kenji Suzuki, Nobuyuki Koike, Eiji Koshiishi and
Sotaro Miyano*

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki-Aoba 07, Aoba-ku, Sendai 980-8579, Japan

Received (in Cambridge) 1st October 1998, Accepted 8th October 1998

Abstract

The ester-mediated nucleophilic aromatic substitution $\left(\mathrm{S}_{\mathrm{N}} \mathrm{Ar}\right)$ reaction of 2-methoxybenzoic ester $\mathbf{1}$ with Grignard reagents 11 is greatly accelerated by introduction of a methoxy or halo substituent at the 3-position of the benzoate ring (7-10). The substituent effects of these groups at the 3-position are compared with those at the 5 -position to suggest that the activation mechanism of the methoxy substituent is different from that of the halo substituent; the ligating ability of the 3-methoxy group plays a crucial role in enhancing the reactivity of the 2-methoxy moiety, while the electron-withdrawing ability is more important in the case of the halo groups. It has also been found that introduction of an additional methoxy substituent at the meta-position $(\mathbf{3 3}, \mathbf{3 4})$ enables the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ methoxydisplacement reaction even at the para-position to the ester activator. The accelerating effect of the 3-bromo substituent is advantageously utilized for regioselective allylation of 3-bromo-2,6-dimethoxybenzoic ester $\mathbf{5 5}$ at the 2-position to provide an easy access to a multisubstituted naphthol $\mathbf{5 9}$, which is a key compound for the syntheses of michellamines $\mathrm{A}-\mathrm{C}$ and the related naphthylisoquinoline alkaloids.

Aromatic syntheses have mostly relied on the introduction of a substituent into an aromatic ring followed by its conversion into other functionalities. Thus, a large number of methodologies have been developed for these transformations. However, regioselective syntheses of multifunctional aromatic compounds are frequently still difficult. Therefore, the regioselective functionalization of the aromatic ring continues to be an important problem in organic synthesis. Recently, we have reported that an ester group significantly activates an orthoalkoxy substituent for the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction (e.g. Scheme 1, path

Scheme 1
a), ${ }^{1}$ and thus, the oxazoline functionality required in the conventional Meyers reaction ${ }^{2}$ can be replaced by a readily prepared and easily removable ester functionality. We have also reported that the 2,6-di-tert-butyl-4-methoxyphenyl (BHA) ester of 2-methoxybenzoic acid $\mathbf{1}$ on treatment with several organo-lithium and -magnesium reagents affords the conjugate addition products $\mathbf{3 , 4}$ to the benzoate ring (path b). ${ }^{3}$ The
dichotomy between the two reaction paths was found to depend mainly on the electron-donating ability of the carbanion species, the stronger electron donors preferring path b to path a. In our continuing efforts to extend the scope and utility of these reactions, we have found that the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction is greatly accelerated by introduction of a methoxy or halo substituent into the 3 -position of the benzoate ring (Scheme 2).

Scheme 2 Reagents: i, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{PhH}$.
Close scrutiny of the literature revealed that Fuson et al. reported a similar accelerating effect of a meta-methoxy group in the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction of 2-methoxybenzonitriles with Grignard reagents as early as $1948 .{ }^{4}$ They found that displacement of the 2 -methoxy group occurs only if the 3-position is occupied by the second methoxy group. They also reported the 4-methoxysubstitution reaction of 3,4-dimethoxyphenyl mesityl ketone with benzylmagnesium chloride. ${ }^{5}$ On the other hand, Meyers and co-workers have recently reported the regioselective 2 -alkoxy-displacement reaction of [2,6-dialkoxy-3,4-(methylenedioxy)phenylloxazoline with an aryl Grignard reagent. ${ }^{6}$ It is quite obvious that these accelerating effects of the adjacent substituent to the leaving group have great potential in the regioselective syntheses of multisubstituted aromatic compounds. However, research from such a view point is scarce in

Table 1 The substituent effect in the 2-methoxy-displacement reaction

Entry	Substrate	Nucleophile	t / h	Product	Yield (\%)
1	7	11a	1^{a}	12a	94
2	7	11b	1^{a}	12b	95
3	7	11c	1^{a}	12c	94
4	7	11d	1^{a}	12d	97
5	7	11e	3^{a}	12e	$63^{\text {b }}$
6	7	11e	6^{a}	12e	89
7	7	11f	48^{a}	12 f	$22^{\text {c }}$
8	8	11a	1^{a}	13a	92
9	8	11d	1^{a}	13d	99
10	8	11e	3^{a}	13 e	55^{d}
11	9	11a	1^{a}	14a	98
12	9	11d	1^{a}	14d	98
13	9	11e	3^{a}	14e	45^{e}
14	10	11a	1^{a}	15a	89
15	10	11d	1^{a}	15d	93
16	10	11e	3^{a}	15e	65^{f}
17	20	11a	1^{a}	13a	94
18	20	11d	1^{a}	13d	53
19	20	11e	$24^{a} \rightarrow 12^{g}$	13e	12^{h}
20	21	$11 a^{i}$	1^{a}	22	98
21	21	11e	3^{a}	23	87
22	24	11a	24^{a}	25	81^{j}
23	26	11a	$1.5{ }^{\text {a }}$	27	90

${ }^{a}$ At room temp. ${ }^{b}$ Ester 7 was recovered in 35% yield. ${ }^{c}$ Ester 16 was obtained in 42% yield after treatment of the crude product with DDQ.
${ }^{d}$ Phenol 17 was obtained in 9% yield. ${ }^{e}$ Phenol 18 was obtained in 14% yield. ${ }^{f}$ Phenol 19 was obtained in 8% yield. ${ }^{g}$ At reflux. ${ }^{h}$ Ester 20 was recovered in 57% yield. ${ }^{i} 1.5$ equiv. ${ }^{j}$ Ester 24 was recovered in 12% yield.
the literature, except the report by Wells et al. dealing with the regioselective 2 -fluoro-displacement of 2,3,6-trifluorobenzonitrile by an alkoxide. ${ }^{7}$ Herein, we report the accelerating effects of meta substituents in the ester-mediated $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction and the application of the methodology to the regioselective synthesis of multisubstituted naphthol $\mathbf{5 9}$, which is a key compound for the syntheses of naphthylisoquinoline alkaloids.

Results and discussion

ortho-Methoxy substitution of 2-methoxybenzoic esters

 promoted by a meta substituentBefore describing the results of the reactions of 3 -substituted 2-methoxybenzoic esters $\mathbf{7 - 1 0}$ with Grignard reagents 11a-f (Scheme 2), we would like to summarize briefly the previous results of the corresponding reactions of 2-methoxybenzoic ester 1 (Scheme 1). ${ }^{3}$ Treatment of ester 1 with 2.5 equiv. of phenyl-, butyl- and isopropyl-magnesium bromide 11a-c in diethyl ether-benzene at room temperature for $18-24 \mathrm{~h}$ and then, if necessary, at reflux for a further 1 h , afforded the methoxy-substitution products $\mathbf{2}$ in almost quantitative yields. On the other hand, benzyl- and tert-butyl-magnesium bromide $\mathbf{1 1 e}, \mathbf{f}$ were rather reluctant to react with ester $\mathbf{1}$ under the same reaction conditions, giving no $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ products in detectable amounts, but conjugate addition to the benzoate ring occurred to give cyclohexadienes $\mathbf{3}$ after prolonged reaction time (96 h). They were aromatized for quantification by treatment with DDQ to give 4 -substituted benzoic esters 5 in 76 and 74% yields, respectively.

The results listed in Table 1 reveal the effects brought about by introducing a 3 -methoxy or 3 -halo substituent. Reactions of 2,3-dimethoxybenzoic ester 7 with phenyl-, butyl-, isopropyland allyl-magnesium bromide 11a-d were completed in less than 1 h at room temperature, giving the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ products 12a-d in excellent yields (entries 1-4). It can be seen that the path of the reaction between ester 1 and benzylmagnesium bromide 11e was completely changed from the conjugate addition to the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction by introduction of a methoxy group into the 3 -position of the benzoate ring (7) (entries 5 and 6). On the other hand, the conjugate addition still predominated in the
reaction of ester 7 with tert-butylmagnesium bromide 11f to give, after aromatization by treatment with DDQ, 4 -substituted benzoic ester 16 in 42% yield, while the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ product $\mathbf{1 2 f}$ was also obtained in 22% yield (entry 7).

$17 R=F$
$18 \mathrm{R}=\mathrm{Cl}$
$19 \mathrm{R}=\mathrm{Br}$

Interestingly, a 3-halo substituent showed a similar accelerating effect, as can be seen in the reactions of 3-halo-2-methoxybenzoic esters 8-10 with Grignard reagents $\mathbf{1 1}$ (entries 8-16): esters $8-10$ showed almost equal reactivity toward the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction with the phenyl and allyl Grignard reagents 11a,d to that of 2,3-dimethoxybenzoic ester 7, giving substitution products 13a,d-15a,d within 1 h in excellent yields. Benzylmagnesium bromide 11e also reacted with esters 8-10 to afford the methoxy-displacement products $13 \mathrm{e}-\mathbf{1 5 e}$ in somewhat reduced yields, accompanied by demethylation of substrates $8-10$ to give 2-hydroxybenzoic esters $17-19$ in $8-14 \%$ yield. We attempted to replace the methoxy leaving group (8) with a fluoro moiety (20) to avoid the demethylation problem. Although the replacement did not appreciably alter the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction with the phenyl Grignard reagent 11a (compare entry 17 with entry 8), it slowed down the reactions with allyl- and benzyl-magnesium bromide 11d,e (entries 18 and 19).
As has been reported previously, steric balance between the ester moiety and the nucleophile is crucial to proceed the estermediated $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction of 2-methoxybenzoic esters while preventing nucleophilic attack at the ester carbonyl function. ${ }^{8}$ Thus, 2,6-di-tert-butylphenyl esters (e.g. 1) when treated with phenylmagnesium bromide 11a gave the corresponding $1,1^{\prime}$ -biphenyl-2-carboxylic esters in almost quantitative yields, while the reaction of the 2,6-diisopropylphenyl (DIPP) ester of 2-methoxybenzoic acid afforded the corresponding biphenyl in 71% yield, accompanied by a formation of the carbonyl addition product, (2-methoxyphenyl)diphenylmethanol, in 21\% yield. On the other hand, the DIPP ester of 2,3-dimethoxybenzoic acid 21, with the aid of the accelerating effect of the 3-methoxy moiety, exclusively underwent the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction when treated with the Grignard reagent 11a (entry 20). It should be noted that the use of the less bulky DIPP rather than BHA as the carboxy protecting group shortened substantially the reaction time, as exemplified by comparing the result of entry 21 with that of entry 5 .

Mechanistic consideration of the accelerating effect of the meta substituent

From the view point of the steric effect, the 3-methoxy or halo
substituent of esters $\mathbf{7 - 1 0}$ should retard rather than promote the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ displacement of the 2-methoxy group, as exemplified by the previously reported reaction of 3 -methyl-substituted 2 -alkoxybenzoic esters. ${ }^{9}$ It has been a common understanding that an electron-withdrawing substituent usually facilitates conventional $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions but a donating group retards them. Therefore, it is obvious that the electronic effect of the substituent at the 3 -position does not solely explain the enhanced reactivity, considering the fact that both the electrondonating methoxy and electron-withdrawing halo substituents promoted the reaction. In fact, the 5-methoxy substituent of 2,5-dimethoxybenzoic ester $\mathbf{2 4}$, which is expected to exert an electronic effect toward the 2-methoxy leaving group similar to that of the 3-methoxy substituent of 2,3-dimethoxybenzoic ester 7 , significantly retarded the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction with the phenyl Grignard reagent 11a (entry 22). On the other hand, the 5-chloro substituent of 5-chloro-2-methoxybenzoic ester 26 actually promoted the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction (entry 23), but the accelerating ability of the 5 -chloro substituent was to some extent inferior to that of the 3 -chloro substituent (entry 11). Thus, the 3 -chloro substituent seems to exert an electron-withdrawing effect enforced by a ligating effect (vide infra). Therefore, it may be concluded that, in the case of halogens, their inductive electron-withdrawing nature may be the principal rather than the only factor promoting the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction.
The ester-mediated $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction has been considered to proceed through the strong ligations of both the 2-methoxy and carbonyl oxygen to the metal cation of the nucleophile to form a chelated complex 28, the formation of which should facilitate

28

29

30

31

32
the conjugate addition of the anionic species to the ipso-carbon bearing the leaving group, followed by elimination of the metal alkoxide. ${ }^{10}$ Based on this mechanism, another chelation between the 2- and 3-methoxy substituent or the 2-methoxy and 3-halo substituent in the substrates may play an important role in enhancing the reactivity of the 2-methoxy group, although the ligating abilities of the halo substituents may not be so strong compared to the methoxy substituent. Similar participation of the 3-methoxy substituent has been suggested by Hutchings and Meyers in a related oxazoline-mediated reaction. ${ }^{6}$ A tentative chelated complex 29 formed from ester 7 and two molecules of Grignard reagents is suggested. The formation of the two chelate rings in complex 29 will more effectively prevent resonance stabilization of the aryl-oxygen linkage and polarize more effectively the bond between the 2-methoxy oxygen and the ipso-carbon than the single chelate structure in complex 28 does, to accelerate the addition of the anionic species to the ipso-carbon. The two-chelation mechanism may be supported by the fact that 2,6-di-tert-butyl-4-methylphenyl 2,3-(methylenedioxy)benzoate, which could not form the
second chelate for steric reasons, did undergo the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ displacement at the 2-position but did not show any enhanced reactivity toward the $S_{N} A r$ reaction with the phenyl Grignard reagent 11a as reported previously. ${ }^{11}$

para-Methoxy substitution of 4-methoxybenzoic esters induced by a meta substituent

Next, our interest was directed toward the possibility of whether the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction proceeds at the para-position to the ester activator by introduction of a meta-substituent with potential to ligate to metal cations in cooperation with the paramethoxy moiety (Scheme 3). Treatment of 4-methoxybenzoic

Scheme 3 Reagents: i, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{PhH}$.
ester 39 with 2.5 equiv. of phenyl- and benzyl-magnesium bromide 11a,e in diethyl ether-benzene at reflux for 24 h did not afford the methoxy-substitution product but the substrate 39

39

$41 \mathrm{X}=\mathrm{F}$
$42 \mathrm{X}=\mathrm{Cl}$
$43 \mathrm{X}=\mathrm{Br}$

44

45

40

$46 \mathrm{R}=\mathrm{OMe}$
$47 \mathrm{R}=\mathrm{Ph}$

48
was recovered in 67 and 98%, respectively. In the case of the former reaction, ketone $\mathbf{5 2}$ was also isolated in 23% yield. The formation of ketone $\mathbf{5 2}$ can be rationalized by the sequential reactions: initial conjugate addition of Grignard 11a to ester 39, decomposition of the resulting enolate $\mathbf{4 9}$ to ketone $\mathbf{5 0}$, ${ }^{12}$ and 1,2 -addition of Grignard 11a to give the adduct 51 followed by aqueous work-up to afford ketone 52 (Scheme 4). On the other hand, 3,4-dimethoxybenzoic ester 33 was found to give the substitution products of the 4-methoxy moiety $\mathbf{3 6 a}-\mathbf{c}, \mathbf{e}$ in good to excellent yields on treatment with the Grignard reagents 11a-c,e under refluxing conditions (Table 2, entries 13,5). The reaction of ester 33 with the allyl Grignard reagent 11d, however, afforded a complex mixture which contained 2,6-di-tert-butyl-4-methoxyphenol in 62% yield (entry 4). No detectable amount of the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ product $\mathbf{3 6 f}$ was found in the

Table 2 The substituent effect in the 4-methoxy-displacement reaction

Entry	Substrate	Nucleophile	t / h	Product	Yield (\%)
1	$\mathbf{3 3}$	$\mathbf{1 1 a}$	5^{a}	$\mathbf{3 6 a}$	93
2	$\mathbf{3 3}$	$\mathbf{1 1 b}$	5^{a}	$\mathbf{3 6 b}$	87
3	$\mathbf{3 3}$	$\mathbf{1 1 c}$	3^{a}	$\mathbf{3 6 c}$	97
4	$\mathbf{3 3}$	$\mathbf{1 1 d}$	5^{a}	$\mathbf{3 6 d}$	0^{b}
5	$\mathbf{3 3}$	$\mathbf{1 1 e}$	24^{a}	$\mathbf{3 6 e}$	75
6	$\mathbf{3 3}$	$\mathbf{1 1 f}$	72^{a}	$\mathbf{3 6 f}$	0^{c}
7	$\mathbf{3 4}$	$\mathbf{1 1 a}$	$6^{\boldsymbol{a}}$	$\mathbf{3 7 a}$	91
8	$\mathbf{3 4}$	$\mathbf{1 1 e}$	24^{d}	$\mathbf{3 7 e}$	82
9	$\mathbf{3 5}$	$\mathbf{1 1 a}$	24^{a}	$\mathbf{3 8 a}$	21^{e}
10	$\mathbf{4 6}$	11a	24^{a}	$\mathbf{4 7}$	8^{f}

${ }^{a}$ At reflux. ${ }^{b}$ 2,6-Di-tert-butyl-4-methoxyphenol was obtained in 62% yield. ${ }^{c}$ Phenol 40 was obtained in 21% yield along with ester 33 in 74% recovery. ${ }^{d}$ At room temp. ${ }^{e}$ Ester 35 was recovered in 69% yield. ${ }^{f}$ Oxazoline $\mathbf{4 6}$ was recovered in 79% yield.

51

Scheme 4 Reagents and conditions: i, $\mathrm{PhMgBr}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{PhH}$, reflux; ii, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$.
reaction of ester $\mathbf{3 3}$ with the tert-butyl Grignard reagent $\mathbf{1 1 f}$ but the demethylation product 40 was obtained in 21% yield along with unchanged ester 33 (74% recovery) after prolonged heating at reflux (entry 6). It is of particular interest that 3,4,5-trimethoxybenzoic ester 34 showed reactivity toward the $S_{N} A r$ reaction superior to that of ester 33 , affording the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ products at room temperature (entries 7 and 8).

3-Halo-4-methoxybenzoic esters 41-43, as well as 3,4-difluorobenzoic ester 44, were left almost intact (88, 94, 92 and 79% recovery, respectively) with no detectable amounts of the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ products, when treated with the benzyl Grignard reagent 11e under the same reaction conditions as mentioned for 4-methoxybenzoic ester 39 (vide supra). Similar treatment of esters $\mathbf{4 1 - 4 4}$ with the phenyl Grignard reagent 11a also left the starting esters 41-44 but in somewhat reduced recovery (60, 70, 54 and 58%, respectively). Conjugate addition of Grignard 11a to ester 41-44 may be a plausible explanation of the reduced recovery. However, it should be noted that a small amount of 4-methoxy-2-phenylbenzoic ester 45 (21%) was isolated in the reaction of the bromo ester $\mathbf{4 3}$ with the latter Grignard reagent 11a, suggesting the intermediary of a benzyne in the cine substitution. Therefore, when these halogenated benzoic esters 41-44 were treated with Grignard 11a, directed metallation might have occurred at the 2-position of the benzoate rings with the aid of the ortho-alkoxycarbonyl and the ortho'-halo substituent, and the resulting species would greatly resist the methoxysubstitution reaction due to the negative charge. In line with these explanations, introduction of a pyrrolidinyl substituent, which is a good ligand to metal cations as well as an effective promotor for ortho-metallation, into the 3-position of the
benzoate ring (35) actually induced the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction but the activating power was largely offset by the metallation preference as compared to that of the 3-methoxy moiety of ester $\mathbf{3 3}$ (entry 9). It is noteworthy that oxazoline 46 also afforded the methoxy-substitution product 47 in only a poor yield when treated with the Grignard regent 11a (entry 10). In connection with these observations, it should be mentioned that treatment of ester 33 with 2.5 equiv. of phenyllithium in toluene at $-45^{\circ} \mathrm{C}$ for 3 h resulted in lithiation of ester 33 to afford, after deuterium oxide quenching, a deuterated compound $\mathbf{4 8}$ in 89% yield.

These results suggest that 4-methoxybenzoic esters undergo the methoxy-displacement reaction by Grignard reagents if the 3-position is occupied by a substituent which can ligate to the magnesium cations in cooperation with the 4-methoxy substituent but has rather low ability to promote ortho-metallation. A methoxy group is particularly desirable for this purpose to form a firm chelated complex 31, to induce the para-methoxy substitution (compare complex 30 with 31). The superior reactivity of 3,4,5-trimethoxybenzoic ester 34 to that of its 3,4dimethoxy counterpart 33 may be explained by the formation of a magnesium complex 32 having a bis-chelated structure.

Regioselective synthesis of multisubstituted naphthol 59

The 1,8-dioxygenated 4-aryl-6-methylnaphthalene moiety is a structural unit of anti-HIV agents michellamines $\mathrm{A}-\mathrm{C}^{13}$ and the related naphthylisoquinoline alkaloids. ${ }^{14}$ Thus, hydroxyprotected 4-bromo-1,8-dihydroxy-6-methylnaphthalenes are utilized as key compounds for the syntheses of these naphthylisoquinoline alkaloids via the Kharasch-type biaryl coupling reactions after conversion into proper organometallic species. ${ }^{15}$ Therefore, several papers have dealt with strategies for the synthesis of multisubstituted naphthalenes, but the reported methods require many steps and/or suffer from low yields. ${ }^{15-18}$

It occurred to us that the 3-halo-promoted regioselective displacement of the 2-methoxy substituent of a 2,6-dimethoxybenzoic ester 55 could be advantageously utilized for the construction of the required naphthalene structure (59) (Scheme 5):

Scheme 5 Reagents and conditions: i, BHA-OH, TFAA, PhH , room temp.; ii, Br_{2}, AcOH , room temp.; iii, 2-methylprop-2-enylmagnesium chloride, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{PhH}$, room temp.; iv, 2-methylprop-2-enylmagnesium chloride, THF, room temp.; v, $\mathrm{MeLi}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{THF}$, room temp.; vi, NaOMe, HMPA, $60^{\circ} \mathrm{C}$.
our synthetic strategy started from commercially available 2,6dimethoxybenzoic acid 53, which was esterified to ester 54 and then brominated to the prerequisite bromo ester 55. Treatment of ester 55 with 2-methylprop-2-enylmagnesium chloride in diethyl ether-benzene at room temperature, however, afforded diallylated product 56 exclusively, even after a short time (see Experimental section), showing that the bromo substituent
substantially accelerated not only the ortho- but also the paramethoxy substitution by the inductive effect. We were pleased, however, to find that the regioselective substitution at the orthoposition could be conducted by changing the solvent from diethyl ether-benzene to THF to give monoallylated product 57 in a good yield. We next tried a base-catalyzed cyclization of ester 57 to naphthol 59. Previously, Snieckus and co-workers reported that treatment of N, N-dimethyl-2-(prop-2-enyl)benzamide with methyllithium resulted in the formation of the allyl anion, which then cyclized intramolecularly between the allyl terminus at the 3^{\prime}-position and the carbonyl carbon to afford 1-naphthol after aqueous work-up. ${ }^{19}$ We tried to apply this procedure to ester 57 . However, it was found that the use of a strong base was incompatible with ester 57 because of the presence of the bromo substituent; the Wurtz-type coupling reaction occurred on treatment of ester 57 with methyllithium in diethyl ether-THF to give methylated product 58 in 80% yield. We found, however, that the desired naphthol 59 was obtained in a good yield when ester 57 was treated with sodium methoxide in HMPA. Changing the solvent from HMPA to DMF or 1,3-dimethylimidazolidin-2-one (DMI) caused isomerization of the terminal double bond of the allylic moiety and transesterification to the methyl ester, affording no cyclization product. Efforts are still in progress to replace HMPA with a more convenient solvent for the cyclization step.

In conclusion, we have shown here the exceptional substituent effects of methoxy and halo groups in the ester-mediated $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. These effects were effectively utilized to control the reactivities of the methoxy leaving groups at the $2,4,6$ positions of a benzoate ring toward the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction, affording a convenient method for the regioselective synthesis of multisubstituted aromatic compounds.

Experimental

Mps were taken using a Mitamura Riken MP-P apparatus and are uncorrected. IR spectra were recorded on a Shimadzu IR460 or FT-IR 8300 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker DPX-400 or DRX-500 spectrometer using tetramethylsilane as the internal standard and CDCl_{3} as the solvent. J Values are given in Hz . Microanalyses were carried out in the Microanalytical Laboratory of the Institute for Chemical Reaction Science, Tohoku University. Merck silica gel $60 \mathrm{GF}_{254}$ was used for analytical and preparative TLC (PLC). Silica gel columns were prepared by use of Merck silica gel $60(63-200 \mu \mathrm{~m})$. Alumina columns were prepared by use of Nacalai activated alumina 300 (300 mesh). Water- and airsensitive reactions were routinely carried out under nitrogen. Diethyl ether, THF, benzene and toluene were distilled from sodium diphenyl ketyl just before use. Other solvents for experiments requiring anhydrous conditions were purified by usual methods. 3-Bromo-2-methoxybenzoic acid, ${ }^{20} 3$-chloro-4methoxybenzoic acid, ${ }^{21} 3$-bromo-4-methoxybenzoic acid ${ }^{21}$ and methyl 3-amino-4-methoxybenzoate ${ }^{22}$ were prepared according to the literature procedures.

3-Chloro-2-methoxybenzoic acid

This compound was prepared according to the literature procedure for the preparation of 3-bromo-2-methoxybenzoic acid from 2-bromophenol. ${ }^{20}$ 2-Chlorophenol ($25.1 \mathrm{~g}, 195 \mathrm{mmol}$) was allylated with allyl bromide ($25.6 \mathrm{~g}, 212 \mathrm{mmol}$) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(40.5 \mathrm{~g}, 293 \mathrm{mmol})$ in refluxing acetone $\left(180 \mathrm{~cm}^{3}\right)$ for 3 h . After work-up, the crude product was distilled under reduced pressure ($94{ }^{\circ} \mathrm{C} / 1.07 \mathrm{kPa}$) to give 1-chloro-2-(prop-2enyloxy) benzene ($28.0 \mathrm{~g}, 85 \%$) as an oil (Found: C, 63.8; H, 5.2; Cl, 20.7. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}$ requires $\mathrm{C}, 64.1 ; \mathrm{H}, 5.4 ; \mathrm{Cl}, 21.0 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1250$ and $1057 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 4.59(2 \mathrm{H}, \mathrm{d}, J 5.2$, OCH_{2}), $5.30\left[1 \mathrm{H}, \mathrm{dd}, J 10.6\right.$ and $1.2, \mathrm{CH}=\mathrm{CH}_{2}($ trans $\left.)\right], 5.46$ $\left[1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and $1.2, \mathrm{CH}=\mathrm{CH}_{2}(c i s)$], $6.06(1 \mathrm{H}, \mathrm{ddt}, J 17.3$,
10.6 and $\left.5.2, \mathrm{C} H=\mathrm{CH}_{2}\right), 6.86-6.91(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{td}$, $J 7.8$ and $1.1, \mathrm{ArH})$ and $7.35(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.1, \mathrm{ArH})$.

The allyl ether ($26.5 \mathrm{~g}, 157 \mathrm{mmol}$) was heated at $200^{\circ} \mathrm{C}$ for 6 h under nitrogen. The crude product was worked up and distilled under reduced pressure $\left(72.5^{\circ} \mathrm{C} / 333 \mathrm{~Pa}\right)$ to give 2-chloro-6-(prop-2-enyl)phenol ($23.5 \mathrm{~g}, 89 \%$) as an oil (Found: C, 63.8; $\mathrm{H}, 5.3 ; \mathrm{Cl}, 20.8$. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}$ requires $\mathrm{C}, 64.1 ; \mathrm{H}, 5.4 ; \mathrm{Cl}, 21.0 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3535 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 3.43\left(2 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{ArCH}_{2}\right)$, 5.06-5.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})_{2}$), $5.62(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.94-6.04(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}\right), 6.80(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{ArH}), 7.04(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.6, \mathrm{ArH})$ and $7.18(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.6, \mathrm{ArH})$.
The phenol ($22.6 \mathrm{~g}, 134 \mathrm{mmol}$) was methylated with iodomethane ($38.3 \mathrm{~g}, 270 \mathrm{mmol}$) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(27.9 \mathrm{~g}$, 202 mmol) in refluxing acetone ($50 \mathrm{~cm}^{3}$) for 1 h to give 1 -chloro-2-methoxy-3-(prop-2-enyl)benzene (23.8 g) after usual workup. The product was spectromerically pure enough to use in the following step without further purification, $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 3.44$ $\left(2 \mathrm{H}, \mathrm{dt}, J 6.6\right.$ and 1.4, $\left.\mathrm{ArCH}_{2}\right), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.07[1 \mathrm{H}$, dq, $J 16.8$ and $\left.1.4, \mathrm{CH}=\mathrm{CH}_{2}(c i s)\right], 5.09[1 \mathrm{H}, \mathrm{dq}, J 10.3$ and 1.4 , $\mathrm{CH}=\mathrm{CH}_{2}$ (trans)], $5.96(1 \mathrm{H}$, ddt, $J 16.8,10.3$ and 6.6 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.99(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{ArH}), 7.09(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 1.7 , $\mathrm{ArH})$ and $7.24(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.7, \mathrm{ArH})$.

The crude terminal olefin ($23.8 \mathrm{~g}, c a .130 \mathrm{mmol}$) was isomerized to an (E) - and (Z)-mixture of the internal olefins by boiling with $\mathrm{KOH}(49.7 \mathrm{~g})$ in a mixture of ethanol ($120 \mathrm{~cm}^{3}$) and water $\left(15 \mathrm{~cm}^{3}\right)$ for 5 h . The mixture was worked up and the crude product was oxidized by $\mathrm{KMnO}_{4}(61.0 \mathrm{~g}, 386 \mathrm{mmol})$ in acetone ($1.4 \mathrm{dm}^{3}$) at $0{ }^{\circ} \mathrm{C}$ for 3 h . After work-up, recrystallization from ethanol-dichloromethane gave 3-chloro-2-methoxybenzoic acid (11.8 g). The mother liquor was evaporated and the residue was chromatographed on a silica gel column with hexane-ethyl acetate $(4: 1)$ as the eluent to give an additional crop (1.44 g) for a total yield of $13.2 \mathrm{~g}[53 \%$ based on the 2-chloro-6-(prop-2-enyl)phenol] as crystals, mp $122-123^{\circ} \mathrm{C}$ (Found: C, $51.4 ; \mathrm{H}, 3.9 ; \mathrm{Cl}, 19.0 . \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 51.5 ; \mathrm{H}$, $3.8 ; \mathrm{Cl}, 19.0 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2995$ and $1674 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ 4.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $7.21(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArH}$), $7.63(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.7, \mathrm{ArH})$ and $7.99(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 1.7, ArH$)$.

General procedure for esterification of mono-, di- and trimethoxybenzoic acids

Mono-, di- and tri-methoxybenzoic esters 7, 21, 24, 33, 34 and 39 were prepared by the same procedure as reported before, ${ }^{23}$ unless otherwise noted. A mixture of the corresponding benzoic acid (40.0 mmol), the equimolar amount of 2,6 -di-tert-butyl-4-methoxy- or 2,6-diisopropyl-phenol, TFAA (16.8 $\mathrm{g}, 80.0 \mathrm{mmol})$ and dry benzene $\left(30 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 4 h to 5 d , while the reaction was monitored by TLC. After work-up, the crude product was purified by recrystallization from ethanol.

Ester 7. As crystals (63%), mp $144-145^{\circ} \mathrm{C}$ (Found: C, 72.0 ; $\mathrm{H}, 7.8 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$ requires C, $\left.72.0 ; \mathrm{H}, 8.1 \%\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1735; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.35\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.16$ $(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $2.0, \mathrm{ArH}), 7.19(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH})$ and 7.70 $(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $2.0, \mathrm{ArH})$.

Ester 21. As crystals (85%), mp $122-123^{\circ} \mathrm{C}$ (Found: C, 73.5 ; $\mathrm{H}, 7.8 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$ requires C, 73.7; $\left.\mathrm{H}, 7.7 \%\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1729 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.23\left(12 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH} M e_{2} \times 2\right), 3.11(2 \mathrm{H}$, sept, $J 6.9, \mathrm{C} H \mathrm{Me}_{2} \times 2$), $3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $7.14(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $1.8, \mathrm{ArH}), 7.17-7.27(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.50(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $1.8, \mathrm{ArH})$.

Ester 24. The crude product was chromatographed on a silica gel column with hexane-ethyl acetate ($19: 1$ to $6: 1$) as the eluent; crystals (96%), mp 91.4-92.3 ${ }^{\circ} \mathrm{C}$ (Found: C, 71.8; H, 8.0. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 72.0 ; \mathrm{H}, 8.1 \%\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1711$;
$\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.34\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.83$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.00(1 \mathrm{H}$, d, $J 9.1, \mathrm{ArH}$), $7.13(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and 3.2, ArH) and $7.67(1 \mathrm{H}$, d, J 3.2, ArH).

Ester 33. The reaction was carried out by using 4.0 equiv. of TFAA. Recrystallization of the crude product gave ester 33 $(6.93 \mathrm{~g})$. The mother liquor was evaporated and the residue was chromatographed on a silica gel column with hexane-ethyl acetate $(7: 1)$ as the eluent to give an additional crop (1.17 g) for a total yield of $8.10 \mathrm{~g}(51 \%)$ as crystals, $\mathrm{mp} 141-142^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 71.8 ; \mathrm{H}, 8.2 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 72.0 ; \mathrm{H}, 8.1 \%\right) ; v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1725 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.33\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}$, OMe), 3.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.91 ($2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 6.99(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.69(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{ArH})$ and $7.90(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 2.0, ArH).

Ester 34. The reaction was carried out by using 4.0 equiv. of TFAA. The crude product was chromatographed on a silica gel column with hexane-ethyl acetate (19:1) as the eluent; crystals $(35 \%), \mathrm{mp} 159-160{ }^{\circ} \mathrm{C}$ (Found: C, 69.7; H, 7.9. $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6}$ requires C, $69.7 ; \mathrm{H}, 8.0 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1726 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.33\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94(6 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe} \times 2$), $3.97(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.48(2 \mathrm{H}$, s, ArH).

Ester 39. The reaction was conducted in TFAA $\left(40 \mathrm{~cm}^{3}\right)$ without the use of benzene; crystals (63%), mp $140-141^{\circ} \mathrm{C}$ (Found: C, 74.4; H, 8.0. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, 74.6; H, 8.2\%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1732 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.32\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.90 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.90 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 7.00-7.03 $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 8.18-8.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

General procedure for esterification of halo-substituted benzoic acid

Halogenated benzoic esters 9, 10, 20 and 42-44 were prepared by a similar procedure to that described in the previous paper. ${ }^{24}$ The corresponding acid (12.0 mmol) was boiled in thionyl chloride $\left(10 \mathrm{~cm}^{3}\right)$ for 3 h and then volatiles were removed under reduced pressure to give the acid chloride. This was dissolved in dry benzene $\left(20 \mathrm{~cm}^{3}\right)$ and the solution was added to a mixture of 2,6-di-tert-butyl-4-methoxyphenol ($2.55 \mathrm{~g}, 10.8 \mathrm{mmol}$), 4-pyrrolidinylpyridine (4-PPy) ($1.78 \mathrm{~g}, 12.0 \mathrm{mmol}$), pyridine $\left(4.0 \mathrm{~cm}^{3}\right)$ and benzene ($30 \mathrm{~cm}^{3}$). The mixture was refluxed for 24 h and worked up. The crude product was purified by chromatography on a silica gel column using the indicated eluent, unless otherwise noted.

Ester 9. Hexane-ethyl acetate (19:1) as the eluent; crystals (48%), mp 141-142 ${ }^{\circ} \mathrm{C}$ (Found: C, 68.35 ; H, 7.1; Cl, 9.0. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{ClO}_{4}$ requires C, $\left.68.2 ; \mathrm{H}, 7.2 ; \mathrm{Cl}, 8.8 \%\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1740 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.34\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.92(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.23(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH})$, $7.66(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.7, \mathrm{ArH}$) and $8.11(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.7, \mathrm{ArH}$).

Ester 10. The crude product was recrystallized from hexaneethanol to give ester $\mathbf{1 0}(1.75 \mathrm{~g})$. The mother liquor was evaporated and the residue was chromatographed on a silica gel column with hexane-ethyl acetate (19:1) as the eluent to give an additional crop $(2.04 \mathrm{~g})$ for a total yield of $3.79 \mathrm{~g}(78 \%)$ as crystals, mp $162-164^{\circ} \mathrm{C}$ (Found: C, $61.35 ; \mathrm{H}, 6.45 ; \mathrm{Br}, 17.6$. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrO}_{4}$ requires C, $\left.61.5 ; \mathrm{H}, 6.5 ; \mathrm{Br}, 17.8 \%\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1739 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.34\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right)$, $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.17(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArH})$, $7.84(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.7, \mathrm{ArH})$ and $8.18(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.7, \mathrm{ArH}$).

Ester 20. The crude product was recrystallized from ethanol
to give ester $\mathbf{2 0}(1.97 \mathrm{~g})$. The mother liquor was evaporated and the residue was chromatographed on a silica gel column with hexane-ethyl acetate ($14: 1$) as the eluent to give an additional crop (465 mg) for a total yield of $2.44 \mathrm{~g}(60 \%)$ as crystals, mp $119-120{ }^{\circ} \mathrm{C}$ (Found: C, 70.35; H, 6.7. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{3}$ requires C, $70.2 ; \mathrm{H}, 7.0 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1734 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.33(18 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Bu}^{t} \times 2\right)$, $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.25(1 \mathrm{H}$, tdd, $J 8.0,4.6$ and $1.7, \mathrm{ArH}), 7.42-7.49(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.93 ($1 \mathrm{H}, \mathrm{ddt}, J 8.0,6.1$ and 1.8, ArH).

Ester 42. Hexane-ethyl acetate ($9: 1$ to $4: 1$) as the eluent; crystals (85%), mp 133-135 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.9; H, 7.1; Cl, 9.0. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{ClO}_{4}$ requires C, $\left.68.2 ; \mathrm{H}, 7.2 ; \mathrm{Cl}, 8.8 \%\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1727 ; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.31\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH})$, $8.14(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 2.1, ArH) and $8.23(1 \mathrm{H}, \mathrm{d}, J 2.1, \mathrm{ArH})$.

Ester 43. Hexane-ethyl acetate ($6: 1$) as the eluent; crystals (47%), mp 169-170 ${ }^{\circ} \mathrm{C}$ (Found: C, 61.4; H, 6.5; Br, 17.5. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrO}_{4}$ requires C, $\left.61.5 ; \mathrm{H}, 6.5 ; \mathrm{Br}, 17.8 \%\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1731 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.31\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.02(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH})$, $8.18(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 2.1, ArH) and $8.40(1 \mathrm{H}, \mathrm{d}, J 2.1, \mathrm{ArH})$.

Ester 44. Hexane-ethyl acetate (24:1) as the eluent; crystals (74%), mp 103-105 ${ }^{\circ} \mathrm{C}$ (Found: C, 70.2; H, 7.0. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{3}$ requires C, $70.2 ; \mathrm{H}, 7.0 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1733 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.31\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, 7.30-7.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 8.00-8.07 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

2,6-Di-tert-butyl-4-methoxyphenyl 3-fluoro-2-methoxybenzoate 8

This compound was found to be readily prepared from 2,3difluorobenzoic ester 20 via the ester-mediated 2 -fluorodisplacement reaction by sodium methoxide in THF. ${ }^{7,9,25}$ To dry methanol ($16 \mathrm{~cm}^{3}$) was added sodium ($800 \mathrm{mg}, 34.8 \mathrm{mmol}$) and the mixture was stirred at room temperature until hydrogen evolution ceased. The excess of methanol was distilled off and the residue was heated at $110^{\circ} \mathrm{C}$ under reduced pressure for 2 h to give sodium methoxide. This was suspended in dry THF (45 cm^{3}) and a solution of ester $20(1.66 \mathrm{~g}, 4.41 \mathrm{mmol})$ in THF (20 cm^{3}) was added. The mixture was stirred at room temperature for 1 h and then poured into $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(150 \mathrm{~cm}^{3}\right)$. After the two layers had been separated, the aqueous layer was extracted with diethyl ether and the combined organic layer was washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a silica gel column eluting with hexane-ethyl acetate ($14: 1$) to give ester $8(1.49 \mathrm{~g}, 87 \%)$ as crystals, $\mathrm{mp} 81.0-82.5^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 71.4 ; \mathrm{H}, 7.25 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{FO}_{4}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 7.5 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1744 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.35\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.17(1 \mathrm{H}$, td, $J 8.1$ and $4.8, \mathrm{ArH}), 7.35(1 \mathrm{H}$, ddd, $J 10.9,8.1$ and $1.7, \mathrm{ArH}$) and $7.91(1 \mathrm{H}$, ddd, $J 8.1,1.7$ and $1.5, \mathrm{ArH})$.

2,6-Di-tert-butyl-4-methoxyphenyl 5-chloro-2-methoxybenzoate 26

This compound was prepared by esterification of 2,5 dichlorobenzoic acid with 2,6-di-tert-butyl-4-methoxyphenol, followed by the nucleophilic 2 -chloro-displacement reaction by sodium methoxide as mentioned for the preparation of ester 9 and 8. The acid chloride prepared from 2,5-dichlorobenzoic acid ($6.94 \mathrm{~g}, 36.3 \mathrm{mmol}$) and thionyl chloride $\left(20 \mathrm{~cm}^{3}\right)$ was treated with 2,6-di-tert-butyl-4-methoxyphenol ($7.73 \mathrm{~g}, 32.7$ mmol) in benzene ($75 \mathrm{~cm}^{3}$)-pyridine ($15 \mathrm{~cm}^{3}$) in the presence of 4-PPy ($5.38 \mathrm{~g}, 36.3 \mathrm{mmol}$) under reflux for 15 h . The crude product was recrystallized from ethanol to give 2,6 -di-tert-butyl-4-methoxyphenyl 2,5 -dichlorobenzoate (7.34 g). The mother liquor was evaporated and the residue was chromato-
graphed on a silica gel column eluting with hexane-ethyl acetate ($12: 1$) to give an additional crop $(3.01 \mathrm{~g})$ for a total yield of $10.4 \mathrm{~g}(77 \%)$ as crystals, mp $108-109^{\circ} \mathrm{C}$ (Found: C, 64.7 ; H, 6.3; $\mathrm{Cl}, 17.4 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 64.6 ; \mathrm{H}, 6.4 ; \mathrm{Cl}, 17.3 \%\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1751 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.34\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.50(2 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{ArH})$ and 8.24 ($1 \mathrm{H}, \mathrm{t}, J 1.4, \mathrm{ArH}$).

Sodium methoxide prepared from sodium $(1.15 \mathrm{~g}, 50.0$ mmol) and methanol ($30 \mathrm{~cm}^{3}$) was suspended in THF ($40 \mathrm{~cm}^{3}$) and a solution of the dichloro ester ($2.05 \mathrm{~g}, 5.00 \mathrm{mmol}$) in THF $\left(40 \mathrm{~cm}^{3}\right)$ was added. The mixture was stirred at room temperature for 5 h and worked up. The crude product was chromatographed on a silica gel column with hexane-ethyl acetate ($10: 1$) as the eluent to give ester $\mathbf{2 6}$ ($367 \mathrm{mg}, 18 \%$) as crystals, $\mathrm{mp} 82.1-$ $83.3^{\circ} \mathrm{C}$ (Found: C, $68.3 ; \mathrm{H}, 7.2 ; \mathrm{Cl}, 8.65 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{ClO}_{4}$ requires C, $68.2 ; \mathrm{H}, 7.2 ; \mathrm{Cl}, 8.8 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1732 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.33\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.01(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 7.53(1 \mathrm{H}, \mathrm{dd}, J 8.9$ and 2.8, ArH) and $8.09(1 \mathrm{H}, \mathrm{d}, J 2.8, \mathrm{ArH})$.

2,6-Di-tert-butyl-4-methoxyphenyl 4-methoxy-3-pyrrolidinylbenzoate 35

To a solution of methyl 3-amino-4-methoxybenzoate (4.66 g , 25.7 mmol) in xylene ($10 \mathrm{~cm}^{3}$)-pyridine ($5.0 \mathrm{~cm}^{3}$) was added butane-1,4-diyl bis(methanesulfonate) ($12.7 \mathrm{~g}, 51.6 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 6 h . After cooling, the mixture was poured into saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether. The extract was dried over MgSO_{4} and evaporated. The residue was chromatographed on a silica gel column with hexane-ethyl acetate ($6: 1$ to $3: 1$) as the eluent to give methyl 4-methoxy-3pyrrolidinylbenzoate ($3.07 \mathrm{~g}, 51 \%$) as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 1715; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.91-1.97\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \times 2\right), 3.29-$ $3.34\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \times 2\right)$, $3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(3 \mathrm{H}, \mathrm{s}$, OMe), $6.83(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{ArH})$ and 7.56 (1 H , dd, $J 8.4$ and 1.9 , ArH).

A sample of the pyrrolidinyl ester ($74.8 \mathrm{mg}, 318 \mu \mathrm{~mol}$) was boiled with $\mathrm{KOH}(35.6 \mathrm{mg})$ in a mixture of ethanol $\left(400 \mathrm{~mm}^{3}\right)$ and water $\left(40 \mathrm{~mm}^{3}\right)$ for 2 h . After most of the ethanol had been evaporated, the mixture was slightly acidified by the addition of $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$, the pH value being adjusted to around 4.5 . The acidic mixture was extracted with ethyl acetate and the extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by PLC with hexane-ethyl acetate ($3: 1$) as the developer to give 4-methoxy-3-pyrrolidinylbenzoic acid (45.4 mg , 65%) as crystals, mp $146-147{ }^{\circ} \mathrm{C}$ (Found: C, 65.3; H, 7.1; N, 6.2. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires C, $65.1 ; \mathrm{H}, 6.8 ; \mathrm{N}, 6.3 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2968 and $1680 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.92-1.99\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{2} \times 2\right), 3.31-3.37\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \times 2\right), 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.87(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 7.50(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{ArH})$ and 7.66 $(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $2.0, \mathrm{ArH})$. Application of this procedure to the pyrrolidinyl ester $(2.77 \mathrm{~g}, 11.8 \mathrm{mmol})$ gave the acid $(2.45 \mathrm{~g})$, which was used without purification for the following reaction.

The crude acid ($2.45 \mathrm{~g}, c a .11 .1 \mathrm{mmol}$) was boiled in thionyl chloride ($12 \mathrm{~cm}^{3}$) for 2 h and then volatiles were removed under reduced pressure to give the acid chloride. This was dissolved in dry benzene ($12 \mathrm{~cm}^{3}$) and the solution was added to a mixture of 2,6-di-tert-butyl-4-methoxyphenol ($2.89 \mathrm{~g}, 12.2 \mathrm{mmol}$), 4-PPy ($1.82 \mathrm{~g}, 12.3 \mathrm{mmol}$), DMAP ($1.49 \mathrm{~g}, 12.2 \mathrm{mmol}$), pyridine $\left(6.0 \mathrm{~cm}^{3}\right)$ and benzene $\left(12 \mathrm{~cm}^{3}\right)$. The mixture was refluxed for 24 h . After cooling, the resulting mixture was poured into saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(35 \mathrm{~cm}^{3}\right)$ and the two layers were separated. The organic layer was extracted with diethyl ether and the combined organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Chromatography on a silica gel with hexane-ethyl acetate (6:1) as the eluent gave ester $35(436 \mathrm{mg}, 8 \%$ based on the methyl 4-methoxy-3-pyrrolidinylbenzoate) as crystals, $\mathrm{mp} 151-153{ }^{\circ} \mathrm{C}$ (Found: C, 73.7; H, 8.3; N, 3.1. $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{4}$ requires $\left.\mathrm{C}, 73.8 ; \mathrm{H}, 8.5 ; \mathrm{N}, 3.2 \%\right)$; $v_{\max }(\mathrm{KBr}) /$
$\mathrm{cm}^{-1} 1723 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.32\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 1.93-1.97(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \times 2\right), 3.35-3.39\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \times 2\right), 3.82(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.92(1 \mathrm{H}, \mathrm{d}$, $J 8.5, \mathrm{ArH}), 7.57(1 \mathrm{H}, \mathrm{d}, J 2.1, \mathrm{ArH})$ and $7.75(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 2.1, ArH).

2,6-Di-tert-butyl-4-methoxyphenyl 3-fluoro-4-methoxybenzoate 41

This compound was prepared by the same procedure as mentioned for the preparation of ester $\mathbf{8}$. Sodium methoxide prepared from sodium ($1.85 \mathrm{~g}, 80.5 \mathrm{mmol}$) and methanol ($30 \mathrm{~cm}^{3}$) was suspended in THF ($80 \mathrm{~cm}^{3}$) and a solution of ester 44 (3.02 $\mathrm{g}, 8.02 \mathrm{mmol}$) in THF ($40 \mathrm{~cm}^{3}$) was added. The mixture was stirred at room temperature for 5 h and worked up. The crude product was recrystallized from ethanol to give ester $41(1.33 \mathrm{~g})$. The mother liquor was evaporated and the residue was chromatographed on a silica gel column eluting with hexane-ethyl acetate $(14: 1)$ to give an additional crop (1.50 g) for a total yield of $2.83 \mathrm{~g}(91 \%)$ as crystals, $\mathrm{mp} 150-151^{\circ} \mathrm{C}$ (Found: C, 71.1; $\mathrm{H}, 7.5 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{FO}_{4}$ requires C, $71.1 ; \mathrm{H}, 7.5 \%$); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1728 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.31\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right)$, $3.82(3 \mathrm{H}, \mathrm{s}$, OMe), 3.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 7.08 ($1 \mathrm{H}, \mathrm{t}, J 8.4$, ArH), 7.93 (1 H , dd, $J 11.6$ and 2.1, ArH) and 8.02 (1 H , ddd, J 8.4, 2.1 and 1.2, ArH).

2-(3,4-Dimethoxyphenyl)-4,4-dimethyl-4,5-dihydro-1,3-oxazole 46

This method is essentially the same as reported by Meyers et al. ${ }^{26}$ The acid chloride prepared from 3,4-dimethoxybenzoic acid $(1.00 \mathrm{~g}, 5.49 \mathrm{mmol})$ and thionyl chloride ($3.0 \mathrm{~cm}^{3}$) was dissolved in dry dichloromethane $\left(4.0 \mathrm{~cm}^{3}\right)$ and the solution was added to a solution of 2-amino-2-methylpropan-1-ol (1.03 $\mathrm{g}, 11.6 \mathrm{mmol}$) in dichloromethane ($6.0 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2.5 h and then filtered. The filtrate was evaporated and the residue was dissolved in dry benzene $\left(6.0 \mathrm{~cm}^{3}\right)$. The solution was cooled in an ice bath and thionyl chloride ($3.0 \mathrm{~cm}^{3}$) was added. The mixture was stirred at room temperature overnight, quenched with water $\left(20 \mathrm{~cm}^{3}\right)$ and made alkaline by addition of $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(30 \mathrm{~cm}^{3}\right)$. The mixture was extracted with diethyl ether and the extract was washed with water, dried over MgSO_{4} and evaporated. The residue was chromatographed on a silica gel column with hexane-ethyl acetate $(5: 2)$ as the eluent to give oxazoline 46 $(1.20 \mathrm{~g}, 93 \%)$ as crystals, which melt near room temperature (Found: C, 66.1; H, 7.3; N, 5.95. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires C, $66.4 ; \mathrm{H}$, $7.3 ; \mathrm{N}, 6.0 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1651 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.38(6 \mathrm{H}, \mathrm{s}$, $\mathrm{Me} \times 2), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.09(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2}\right), 6.87(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 7.47(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{ArH})$ and 7.53 ($1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 1.9 , ArH).

General procedure for the $\mathbf{S}_{\mathbf{N}} \mathbf{A r}$ reaction

A mixture of magnesium turnings (100 mg), a few drops of 1,2dibromoethane and dry diethyl ether $\left(1.0 \mathrm{~cm}^{3}\right)$ was irradiated with ultrasound for 10 min . To the activated magnesium was added dropwise a solution of a pertinent bromide (2.50 mmol) in diethyl ether ($2.5 \mathrm{~cm}^{3}$) under sonication over a controlled period of time (30 min for phenyl, butyl and isopropyl bromide, 3 h for allyl and benzyl bromide and 6 h for tert-butyl bromide). After the mixture had been sonicated under gentle reflux for a further 2 h , dry benzene $\left(3.5 \mathrm{~cm}^{3}\right)$ was added, and the resulting mixture was sonicated for 15 min to give the Grignard solution. After cooling, this was added to a solution of a substrate (1.00 mmol) in benzene ($3.5 \mathrm{~cm}^{3}$) and the mixture was stirred at an appropriate temperature for $1-72 \mathrm{~h}$. The mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(15 \mathrm{~cm}^{3}\right)$ and the two layers were separated. The aqueous layer was extracted with diethyl ether and the combined organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. See Tables 1 and 2 for reaction condi-
tions and the yield of the corresponding product. Chromatography on a silica gel column was used for purification of the products using the indicated eluent, unless otherwise noted.

Compound 12a. Hexane-ethyl acetate ($8: 1$) as the eluent; crystals, mp 148-149 ${ }^{\circ} \mathrm{C}$ (Found: C, 77.9; H, 7.6. $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4}$ requires C, $78.0 ; \mathrm{H}, 7.7 \%)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1746 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.28\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.79(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.10-7.13$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.22-7.33 ($4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.53(1 \mathrm{H}, \mathrm{td}, J 8.1$ and $1.0, \mathrm{ArH}$) and $8.06(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.0, \mathrm{ArH}$).

Compound 12b. Hexane-ethyl acetate (20:1) as the eluent; crystals, mp 102-104 ${ }^{\circ} \mathrm{C}$ (Found: C, 76.1; H, 8.9. $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{4}$ requires C, $76.0 ; \mathrm{H}, 9.0 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1729 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $0.86\left[3 \mathrm{H}, \mathrm{t}, J 7.2,\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right], 1.33\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 1.34-1.42$ [$2 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{Me}$], $1.44-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Et}\right), 3.05-$ $3.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2} \mathrm{Pr}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.11(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 1.0, ArH), $7.32(1 \mathrm{H}$, $\mathrm{t}, J 8.1, \mathrm{ArH})$ and $7.97(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $1.0, \mathrm{ArH})$.

Compound 12c. Hexane-ethyl acetate ($20: 1$) as the eluent; crystals, mp 106-107 ${ }^{\circ} \mathrm{C}$ (Found: C, $75.8 ; \mathrm{H}, 8.85 . \mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4}$ requires C, $75.7 ; \mathrm{H}, 8.8 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1734 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.30\left(6 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH} M e_{2}\right), 1.35\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.81(3 \mathrm{H}, \mathrm{s}$, OMe), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.13\left(1 \mathrm{H}\right.$, sept, $J 7.0, \mathrm{C}_{\mathrm{H}} \mathrm{Me}_{2}$), 6.91 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), $7.09(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.31(1 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH})$ and $7.81(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH})$.

Compound 12d. Hexane-ethyl acetate (19:1) as the eluent; crystals, $\mathrm{mp} 124-125^{\circ} \mathrm{C}$ (Found: C, 76.05 ; H, 8.3. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{4}$ requires C, $76.1 ; \mathrm{H}, 8.3 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1731 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.32\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.92 (2 H , ddd, $J 6.3,1.5$ and 1.3, ArCH_{2}), $4.88[1 \mathrm{H}$, ddt, $J 10.1,2.1$ and 1.3, $\mathrm{CH}=\mathrm{CH}_{2}$ (trans)], $4.98[1 \mathrm{H}$, ddt, $J 17.1,2.1$ and $\left.1.5, \mathrm{CH}=\mathrm{CH}_{2}(c i s)\right], 5.97(1 \mathrm{H}$, ddt, $J 17.1,10.1$ and 6.3, $\left.\mathrm{C} H=\mathrm{CH}_{2}\right), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.14(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 1.1, $\mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{ArH})$ and $8.00(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 1.1 , ArH).

Compound 12e. Hexane-ethyl acetate [9:1 (entry 5 in Table 1) or 20:1 (entry 6 in Table 1)] as the eluent; crystals, mp 106$107^{\circ} \mathrm{C}$ (Found: C, 78.4; H, 7.8. $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{4}$ requires C, $78.2 ; \mathrm{H}$, $7.9 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1728 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.24(18 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t} \times 2\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.61(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.86$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), $7.02-7.06$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.09-7.15$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{t}, J 8.1$, $\mathrm{ArH})$ and $8.06(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH})$.

Compound 13a. Hexane-ethyl acetate (19:1) (entry 8 in Table 1) or hexane-benzene ($1: 1$) (entry 17 in Table 1) as the eluent; crystals, mp 224-225 ${ }^{\circ} \mathrm{C}$ (Found: C, 77.1; H, 7.3. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{FO}_{3}$ requires C, $77.4 ; \mathrm{H}, 7.2 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1741 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.28\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.81(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH})$, 7.18-7.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.29-7.35 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.41(1 \mathrm{H}$, $\operatorname{td}, J 8.1$ and $1.2, \mathrm{ArH}), 7.55(1 \mathrm{H}, \mathrm{td}, J 8.1$ and $5.4, \mathrm{ArH})$ and $8.25(1 \mathrm{H}, \mathrm{dt}, J 8.1$ and 1.2, ArH).

Compound 13d. Hexane-ethyl acetate [14:1 (entry 9 in Table 1) or 19:1 (entry 18 in Table 1)] as the eluent; crystals, $\mathrm{mp} 86.6-$ $87.7^{\circ} \mathrm{C}$ (Found: C, $75.2 ; \mathrm{H}, 7.8 . \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{FO}_{3}$ requires $\mathrm{C}, 75.3 ; \mathrm{H}$, $7.8 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1730 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.32(18 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91(2 \mathrm{H}$, ddd, $J 6.4,2.8$ and 1.4 , ArCH_{2}), $4.94\left[1 \mathrm{H}, \mathrm{ddt}, J 10.2,1.5\right.$ and $1.4, \mathrm{CH}=\mathrm{CH}_{2}$ (trans)], $5.01\left[1 \mathrm{H}, \mathrm{dtd}, J 17.0,2.8\right.$ and $1.5, \mathrm{CH}=\mathrm{CH}_{2}$ (cis)], $5.97(1 \mathrm{H}$, ddt, $J 17.0,10.2$ and $\left.6.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.33$ $(1 \mathrm{H}, \mathrm{ddd}, J 9.5,8.0$ and $1.3, \mathrm{ArH}), 7.40(1 \mathrm{H}, \mathrm{td}, J 8.0$ and 5.6 , $\mathrm{ArH})$ and $8.19(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH})$.

Compound 13e (entry 10 in Table 1). The crude product was
chromatographed on a silica gel column with hexane-ethyl acetate (19:1) as the eluent to give a mixture of compounds $\mathbf{1 3}$ e and 17, which was then chromatographed on an alumina column with hexane-benzene ($1: 1$) as the eluent; crystals, mp 108$109{ }^{\circ} \mathrm{C}$ (Found: C, 77.45 ; H, 7.6. $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{FO}_{3}$ requires C, 77.6; $\mathrm{H}, 7.4 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1733 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.24(18 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t} \times 2\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.59\left(2 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.87$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.06-7.10(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.12-7.19(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{ddd}, J 9.4,8.0$ and $1.4, \mathrm{ArH}), 7.43(1 \mathrm{H}, \mathrm{td}$, $J 8.0$ and $5.6, \mathrm{ArH})$ and $8.25(1 \mathrm{H}, \mathrm{dt}, J 8.0$ and $1.4, \mathrm{ArH})$.

Compound 13e (entry 19 in Table 1). Hexane-ethyl acetate (9:1) as the eluent; crystals, the spectral data of which were identical with those of compound 13 e obtained from the reaction of ester $\mathbf{8}$ with benzylmagnesium bromide.

Compound 14a. Hexane-benzene (1:1) as the eluent; crystals, mp 194-195 ${ }^{\circ} \mathrm{C}$ (Found: C, $74.65 ; \mathrm{H}, 6.95 ; \mathrm{Cl}, 8.0 . \mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 74.6 ; \mathrm{H}, 6.9 ; \mathrm{Cl}, 7.9 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1741 ; \delta_{\mathrm{H}}(400$ MHz) $1.27\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.79(2 \mathrm{H}, \mathrm{s}$, ArH), 7.09-7.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.24-7.38 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.52 $(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.75(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.2, ArH) and 8.38 $(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.2, ArH).

Compound 14d. Hexane-ethyl acetate (12:1) as the eluent; crystals, mp 107-108 ${ }^{\circ} \mathrm{C}$ (Found: C, 72.6 ; H, 7.45; Cl, 8.6. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClO}_{3}$ requires C, $\left.72.4 ; \mathrm{H}, 7.5 ; \mathrm{Cl}, 8.5 \%\right) ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1735 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.32\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.07\left(2 \mathrm{H}\right.$, ddd, $J 6.1,1.6$ and $\left.1.5, \mathrm{ArCH}_{2}\right), 4.97[1 \mathrm{H}$, ddt, $J 10.2,1.7$ and 1.5, $\mathrm{CH}=\mathrm{CH}_{2}$ (trans)], $5.01[1 \mathrm{H}$, ddt, $J 17.2$, 1.7 and $\left.1.6, \mathrm{CH}=\mathrm{CH}_{2}(c i s)\right], 5.94(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.2$ and 6.1 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.67$ $(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.3, \mathrm{ArH})$ and $8.34(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.3 , ArH).

Compound 14e. The crude product was chromatographed on a silica gel column with hexane-ethyl acetate ($40: 1$) as the eluent to give a mixture of compounds $\mathbf{1 4 e}$ and $\mathbf{1 8}$, which was then chromatographed on an alumina column with hexane-benzene $(1: 2)$ as the eluent; crystals, $\mathrm{mp} 117-118^{\circ} \mathrm{C}$ (Found: C, 74.65 ; $\mathrm{H}, 7.0 ; \mathrm{Cl}, 7.5 . \mathrm{C}_{29} \mathrm{H}_{33} \mathrm{ClO}_{3}$ requires $\left.\mathrm{C}, 74.9 ; \mathrm{H}, 7.2 ; \mathrm{Cl}, 7.6 \%\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1734 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.22\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.78$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.85(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.01-$ $7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.43(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.73(1 \mathrm{H}, \mathrm{dd}$, $J 8.0$ and $1.3, \mathrm{ArH})$ and $8.41(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.3 , ArH$)$.

Compound 15a. Hexane-ethyl acetate (19:1 to 12:1) as the eluent; crystals, mp $184-185^{\circ} \mathrm{C}$ (Found: C, 68.0; H, 6.2; Br, 16.4. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrO}_{3}$ requires $\mathrm{C}, 67.9 ; \mathrm{H}, 6.3 ; \mathrm{Br}, 16.1 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1741 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.27\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.74$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.79(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.06-7.09(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.27-7.36 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.44(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.94(1 \mathrm{H}, \mathrm{dd}$ $J 8.0$ and $1.2, \mathrm{ArH})$ and $8.25(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.2 , ArH).

Compound 15d. Hexane-ethyl acetate (9:1) as the eluent; crystals, mp 134-135 ${ }^{\circ} \mathrm{C}$ (Found: C, 65.5; H, 6.8; Br, 17.2. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BrO}_{3}$ requires C, $\left.65.4 ; \mathrm{H}, 6.8 ; \mathrm{Br}, 17.4 \%\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1734 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.31\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right)$, $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.10(2 \mathrm{H}$, ddd, $J 6.1,1.6$ and $1.5, \operatorname{ArCH} 2), 4.98[1 \mathrm{H}$, ddt, $J 10.2,1.7$ and $1.5, \mathrm{CH}=\mathrm{CH}_{2}$ (trans)], $5.02[1 \mathrm{H}$, ddt, $J 17.2,1.7$ and 1.6, $\left.\mathrm{CH}=\mathrm{CH}_{2}(c i s)\right], 5.94(1 \mathrm{H}$, ddt, J 17.2, 10.2 and 6.1, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.29(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.87$ $(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.3, \mathrm{ArH})$ and $8.39(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.3 , ArH).

Compound 15e. The crude product was chromatographed on a silica gel column with hexane-ethyl acetate $(40: 1)$ as the eluent to give a mixture of compounds $\mathbf{1 5 e}$ and $\mathbf{1 9}$, which was then chromatographed on an alumina column with hexane-benzene ($1: 1$) as the eluent; crystals, mp 122-123 ${ }^{\circ} \mathrm{C}$ (Found: C, $68.3 ; \mathrm{H}$,
6.35; $\mathrm{Br}, 15.8 . \mathrm{C}_{29} \mathrm{H}_{33} \mathrm{BrO}_{3}$ requires C, 68.4; $\mathrm{H}, 6.5 ; \mathrm{Br}, 15.7 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1733 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.21\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.78$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.82 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 6.85 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 7.00 ($2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}$), $7.07(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.14(2 \mathrm{H}, \mathrm{t}, J 7.3$, $\mathrm{ArH}), 7.35(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.92(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH})$ and 8.46 ($1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}$).

Compound 17. This compound was separated from compound 13 e as mentioned above; crystals, mp $111-112^{\circ} \mathrm{C}$ (Found: C, 70.5; H, 7.25. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{FO}_{4}$ requires C, 70.6; H, 7.3\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3140$ and $1684 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.32(18 \mathrm{H}, \mathrm{s}$, $\mathrm{Bu}^{t} \times 2$), $3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.92(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.96(1 \mathrm{H}, \mathrm{td}$, $J 8.2$ and $4.6, \mathrm{ArH}), 7.37(1 \mathrm{H}$, ddd, $J 10.2,8.2$ and 1.7, ArH), $7.89(1 \mathrm{H}, \mathrm{dt}, J 8.2$ and 1.7, ArH) and $10.82(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

Compound 18. This compound was separated from compound 14e as mentioned above; crystals, mp $118-119^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 67.5 ; \mathrm{H}, 6.9 ; \mathrm{Cl}, 9.4 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 67.6 ; \mathrm{H}$, $7.0 ; \mathrm{Cl}, 9.1 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3105$ and $1684 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.32\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.92(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, 6.99 ($1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArH}$), 7.66 (1 H, dd, $J 7.9$ and 1.5 , ArH), 8.05 $(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.5, \mathrm{ArH})$ and $11.38(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

Compound 19. This compound was separated from compound 15 e as mentioned above; crystals, mp $122-123^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 60.9 ; \mathrm{H}, 6.5 ; \mathrm{Br}, 18.5 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 60.7$; $\mathrm{H}, 6.3 ; \mathrm{Br}, 18.4 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3105$ and $1674 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 1.31\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.92(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 6.94(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArH}), 7.83(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}), 8.09$ $(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH})$ and $11.49(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

Compound 22. Hexane-ethyl acetate (14:1) as the eluent; an oil (Found: C, 80.5; H, 7.6. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C, 80.4; H, 7.3%); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1744 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.10(12 \mathrm{H}, \mathrm{d}, J 6.9$, $\mathrm{CHMe} \times 2), 2.75\left(2 \mathrm{H}\right.$, sept, $\left.J 6.9, \mathrm{C} H \mathrm{Me}_{2} \times 2\right), 3.75(3 \mathrm{H}, \mathrm{s}$, OMe), 7.07-7.18 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.27-7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.47 $(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH})$ and $7.67(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.0 , ArH).

Compound 23. Hexane-ethyl acetate (19:1) as the eluent; crystals, mp 96.2-97.4 ${ }^{\circ} \mathrm{C}$ (Found: C, 80.7; H, 7.6. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, $80.6 ; \mathrm{H}, 7.5 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1726 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.11\left(12 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}{ }_{2} \times 2\right)$, $2.84(2 \mathrm{H}$, sept, $J 6.9$, $\left.\mathrm{CH} \mathrm{Me}_{2} \times 2\right), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.08$ $7.23(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.40(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH})$ and $7.83(1 \mathrm{H}, \mathrm{d}$, $J 8.0, \mathrm{ArH})$.

Compound 25. Hexane-ethyl acetate ($9: 1$) as the eluent; crystals, mp $110-112{ }^{\circ} \mathrm{C}$ (Found: C, 78.0; H, 7.8. $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4}$ requires C, $78.0 ; \mathrm{H}, 7.7 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1743 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.30$ (18 $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.81(2 \mathrm{H}$, s, ArH), 7.17 ($1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 2.7 , ArH), $7.19-7.29(6 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.97(1 \mathrm{H}, \mathrm{d}, J 2.7, \mathrm{ArH})$.

Compound 27. Hexane-ethyl acetate $(10: 1)$ as the eluent; crystals, mp 143-144 ${ }^{\circ} \mathrm{C}$ (Found: C, $74.4 ; \mathrm{H}, 6.9 ; \mathrm{Cl}, 8.0$. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClO}_{3}$ requires $\left.\mathrm{C}, 74.6 ; \mathrm{H}, 6.9 ; \mathrm{Cl}, 7.9 \%\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1747 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.30\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.82(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.17-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.25-7.30(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.60(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and $2.2, \mathrm{ArH})$ and $8.37(1 \mathrm{H}, \mathrm{d}, J 2.2$, ArH).

Compound 36a. Hexane-ethyl acetate (14:1) as the eluent; crystals, mp $195-197^{\circ} \mathrm{C}$ (Found: C, 78.25 ; H, 7.7. $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4}$ requires C, $78.0 ; \mathrm{H}, 7.7 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1727 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.36\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 6.92 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), $7.36-7.40(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.43-7.48$ ($3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.57-7.60(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.80(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{ArH})$ and 7.93 ($1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.5, \mathrm{ArH}$).

Compound 36b. Hexane-ethyl acetate (14:1) as the eluent;
crystals, mp 154-156 ${ }^{\circ} \mathrm{C}$ (Found: C, 76.0; H, 9.0. $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{4}$ requires C, $76.0 ; \mathrm{H}, 9.0 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1730 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $0.96\left[3 \mathrm{H}, \mathrm{t}, J 7.3,\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right], 1.33\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 1.34-1.48$ [$2 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{Me}$], $1.58-1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Et}\right), 2.69$ ($2 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{CH}_{2} \mathrm{Pr}$), $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}), 7.64(1 \mathrm{H}, \mathrm{d}, J 1.5$, $\mathrm{ArH})$ and $7.79(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.5, \mathrm{ArH})$.

Compound 36c. Hexane-ethyl acetate (14:1) as the eluent; crystals, mp 188-190 ${ }^{\circ} \mathrm{C}$ (Found: C, 75.9; H, 8.8. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.7 ; \mathrm{H}, 8.8 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1728 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.26\left(6 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH} e_{2}\right), 1.33\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.39(1 \mathrm{H}$, sept, $J 6.9, \mathrm{C} H \mathrm{Me}_{2}$), $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.35(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}), 7.64(1 \mathrm{H}, \mathrm{d}, J 1.6$, $\mathrm{ArH})$ and $7.83(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.6, ArH).

Compound 36e. Hexane-ethyl acetate ($8: 1$) as the eluent; crystals, mp $156-157^{\circ} \mathrm{C}$ (Found: C, 78.1; H, 7.85. $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{4}$ requires C, $78.2 ; \mathrm{H}, 7.9 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1730 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.31\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 4.04 ($2 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{2} \mathrm{Ph}$), 6.90 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 7.18-7.33 ($6 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.67(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{ArH})$ and $7.77(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 1.5 , ArH).

Compound 37a. Hexane-ethyl acetate (19:1 to $9: 1$) as the eluent; crystals, mp $152-153^{\circ} \mathrm{C}$ (Found: C, $75.6 ;$ H, 7.75. $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{5}$ requires C, 75.6; $\left.\mathrm{H}, 7.6 \%\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1737$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.37\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right)$, $3.82(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2)$, $3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.93(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.34-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.42-7.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.52(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$.

Compound 37e. Hexane-ethyl acetate (19:1 to 6:1) as the eluent; crystals, mp $130-131{ }^{\circ} \mathrm{C}$ (Found: C, 75.9; H, 8.1. $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{5}$ requires C, 75.9; $\left.\mathrm{H}, 7.8 \%\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1729$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.32\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 4.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, 7.14-7.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.22-7.27$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.32-7.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.42 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$).

Compound 38a. Hexane-ethyl acetate $(10: 1)$ as the eluent; crystals, mp 129-130 ${ }^{\circ} \mathrm{C}$ (Found: C, 79.1; H, 8.1; N, 2.8. $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{3}$ requires C, $\left.79.1 ; \mathrm{H}, 8.1 ; \mathrm{N}, 2.9 \%\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1721 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.36\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 1.76-1.81(4 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \times 2$), 2.94-2.99 ($4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \times 2$), $3.83(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 6.92(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.28-7.71(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$)

Compound 40. Hexane-ethyl acetate ($14: 1$) as the eluent; crystals, mp 170-172 ${ }^{\circ} \mathrm{C}$ (Found: C, 71.3; H, 7.6. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5}$ requires $\mathrm{C}, 71.5 ; \mathrm{H}, 7.8 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3395$ and 1697; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.32\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.98$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.11(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.03(1 \mathrm{H}$, d, $J 8.3, \mathrm{ArH}), 7.69(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{ArH})$ and $7.86(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $1.9, \mathrm{ArH}$).

Compound 45. Hexane-ethyl acetate (19:1) as the eluent; crystals, mp $140-142{ }^{\circ} \mathrm{C}$ (Found: C, 78.0; H, 7.7. $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 7.7 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1732 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $1.30\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.81(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.83(1 \mathrm{H}, \mathrm{d}, J 2.7, \mathrm{ArH}), 7.05(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and 2.7, ArH), $7.20-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.40(1 \mathrm{H}, \mathrm{d}, J 8.8$, ArH).
The regiochemistry of the sample was confirmed by comparison of its spectral data with that of an authentic sample which had been prepared from the reaction of 2,6-di-tert-butyl-4-methoxyphenyl 2,4 -dimethylbenzoate with phenylmagnesium bromide.

Compound 47. Hexane-ethyl acetate ($10: 1$ to $2: 1$) as the eluent, crystals, mp $82.5-83.6^{\circ} \mathrm{C}$ (Found: C, 76.9; H, 7.1; N, 4.9. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires C, $\left.76.8 ; \mathrm{H}, 6.8 ; \mathrm{N}, 5.0 \%\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$

1645; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.40(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 2), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 7.31-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.38-7.43(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.52-7.56(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.60(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.5, \mathrm{ArH}$).

Compound 52. Hexane-ethyl acetate ($15: 1$) as the eluent, an oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1620 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 2.56(1 \mathrm{H}$, dd, $J 17.3$ and $\left.2.1, \mathrm{CH}_{2}\right), 3.09\left(1 \mathrm{H}\right.$, ddd, $J 17.3,9.8$ and $\left.1.9, \mathrm{CH}_{2}\right), 3.67$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.43(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 2.1, CHPh), $5.18(1 \mathrm{H}$, dd, $J 6.7$ and $1.9, \mathrm{C} H=\mathrm{COMe}), 6.98(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{C} H=\mathrm{CBz})$, 7.16-7.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.23-7.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.30-7.32 (2 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.37-7.41(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.44-7.48(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.56-7.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

A sample of ketone $52(230 \mathrm{mg}, 792 \mu \mathrm{~mol})$ was aromatized by treatment with DDQ ($450 \mathrm{mg}, 1.98 \mathrm{mmol}$) in toluene $\left(5.0 \mathrm{~cm}^{3}\right)$ at $80^{\circ} \mathrm{C}$ for 12 h . The cooled mixture was poured into 2 mol $\mathrm{dm}^{-3} \mathrm{NaOH}\left(15 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether. The extract was washed successively with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a silica gel column with hexane-ethyl acetate (5:1) as the eluent to give 5-methoxybiphenyl-2-yl phenyl ketone as crystals ($215 \mathrm{mg}, 94 \%$), mp 82.7-83.6 ${ }^{\circ} \mathrm{C}$ (Found: C, 83.4; $\mathrm{H}, 5.65 . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, 83.3; H, $\left.5.6 \%\right)$; $v_{\text {max }}(\mathrm{KBr})$ / $\mathrm{cm}^{-1} 1655 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.97(1 \mathrm{H}, \mathrm{dd}, J 9.4$ and $2.5, \mathrm{ArH}), 6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.12-7.21(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.23-7.27 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.35-7.40 (1 H, m, ArH), 7.50-7.53 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.61-7.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Reaction of ester 7 with tert-butylmagnesium bromide 11f (entry 7 in Table 1)

The Grignard reaction was conducted by the general procedure for the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. After the usual work-up, the crude mixture was treated with DDQ ($749 \mathrm{mmol}, 3.30 \mathrm{mmol}$) in dry toluene ($15 \mathrm{~cm}^{3}$) by the same procedure as mentioned for aromatization of ketone $\mathbf{5 2}$. Chromatography on a silica gel column with hexane-ethyl acetate ($20: 1$) as the eluent gave the following products.

Compound $12 \mathrm{f}(94.9 \mathrm{mg}, 22 \%)$ as crystals, $\mathrm{mp} 197-198^{\circ} \mathrm{C}$ (Found: C, 76.0; H, 8.9. $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{4}$ requires C, $76.0 ; \mathrm{H}, 9.0 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1728 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.34\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 1.52$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.90(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 7.11(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.3, ArH), $7.27(1 \mathrm{H}, \mathrm{t}, J 8.0$, $\mathrm{ArH})$ and $8.06(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.3, ArH).

Compound 16 (192 mg, 42%) as crystals, $\mathrm{mp} 156-158^{\circ} \mathrm{C}$ (Found: C, 73.4; H, 8.85. $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{5}$ requires C, $73.7 ; \mathrm{H}, 8.8 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1742 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.35\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 1.42$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.96(3 \mathrm{H}, \mathrm{s}$, OMe), 6.91 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 7.19 ($1 \mathrm{H}, \mathrm{d}, J 8.6$, ArH) and 7.85 ($1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}$).

Reaction of ester 33 with phenyllithium

To a solution of ester $\mathbf{3 3}(401 \mathrm{mg}, 1.00 \mathrm{mmol})$ in dry toluene $\left(4.0 \mathrm{~cm}^{3}\right)$ was added dropwise phenyllithium $\left(1.04 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in cyclohexane-diethyl ether; $2.4 \mathrm{~cm}^{3}, 2.50 \mathrm{mmol}$) at $-45^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 3 h . The reaction was quenched with deuterium oxide $\left(1.0 \mathrm{~cm}^{3}\right)$ and the mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(15 \mathrm{~cm}^{3}\right)$. The resulting mixture was extracted with diethyl ether and the extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a silica gel column with hexane-ethyl acetate ($14: 1$) as the eluent to give deuterated compound 48 ($359 \mathrm{mg}, 89 \%$) as crystals, $\mathrm{mp} 141-142{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1726 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.33\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.99$ $(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH})$ and $7.90(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH})$.

Synthesis of naphthol 59

Esterification of acid 53 to ester 54. This compound was prepared by the same procedure as reported before. ${ }^{23}$ A mixture of
acid 53 ($9.63 \mathrm{~g}, 52.9 \mathrm{mmol}$), 2,6-di-tert-butyl-4-methoxyphenol $(12.5 \mathrm{~g}, 52.9 \mathrm{mmol})$, TFAA ($22.2 \mathrm{~g}, 106 \mathrm{mmol}$) and dry benzene $\left(40 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 3 h . After workup, the crude product was recrystallized from ethanol to give ester 54 ($19.7 \mathrm{~g}, 93 \%$) as crystals, $\mathrm{mp} 143-144^{\circ} \mathrm{C}$ (Found: C, 71.9; H , 8.1. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 72.0 ; \mathrm{H}, 8.1 \%\right)$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1728 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.38\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.81(3 \mathrm{H}, \mathrm{s}$, OMe), $3.85(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 6.62(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 6.90$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.85(1 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{ArH})$.

Bromination of ester 54 to bromide 55. Ester 54 ($4.01 \mathrm{~g}, 10.0$ mmol) was dissolved in acetic acid ($20 \mathrm{~cm}^{3}$) by heating at $60^{\circ} \mathrm{C}$. To the cooled solution was added dropwise a solution of bromine ($d 3.11 ; 560 \mathrm{~mm}^{3}, 10.9 \mathrm{mmol}$) in acetic acid ($10 \mathrm{~cm}^{3}$) over a period of 1 h with stirring and the mixture was stirred for a further 1 h . After the mixture had been poured into $10 \mathrm{wt} \%$ $\mathrm{Na}_{2} \mathrm{SO}_{3}\left(200 \mathrm{~cm}^{3}\right)$ in an ice bath, the resulting mixture was extracted with diethyl ether and the extract was washed successively with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a silica gel column with hexane-ethyl acetate $(10: 1)$ to give bromide 55 ($4.12 \mathrm{~g}, 86 \%$) as crystals, $\mathrm{mp} 124-125^{\circ} \mathrm{C}$ (Found: C, 59.9 ; H, 6.3; $\mathrm{Br}, 16.5 . \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrO}_{5}$ requires $\mathrm{C}, 60.1 ; \mathrm{H}, 6.5 ; \mathrm{Br}, 16.7 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1734 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.38\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 3.81$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.71 (1 H , d, $J 9.0, \mathrm{ArH}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.64(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{ArH})$.

Allylation of bromide 55 to monoallylated compound 57. A mixture of magnesium turnings (1.15 g), 1,2-dibromoethane $\left(50 \mathrm{~mm}^{3}\right)$ and THF $\left(3.0 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 3 h . To the activated magnesium was added dropwise a solution of 3-chloro-2-methylpropene ($660 \mathrm{mg}, 7.29 \mathrm{mmol}$) in THF $\left(7.0 \mathrm{~cm}^{3}\right)$ over a period of 6 h with stirring, while the reaction vessel was cooled in an ice bath. After being stirred for a further 2 h in the ice bath, the mixture was added dropwise to a solution of bromide $55(1.41 \mathrm{~g}, 2.94 \mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$ over a period of 5 min at room temperature. The mixture was stirred for 10 min and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $\left(100 \mathrm{~cm}^{3}\right)$. After the two layers had been separated, the aqueous layer was extracted with diethyl ether and the combined organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a silica gel column with hexane-ethyl acetate ($10: 1$) as the eluent to give compound $\mathbf{5 7}$ $(1.25 \mathrm{~g}, 84 \%)$ as crystals, $\mathrm{mp} 163-164^{\circ} \mathrm{C}$ (Found: C, 64.2 ; H, 6.9; Br , 15.7. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BrO}_{4}$ requires C, 64.4; $\mathrm{H}, 7.0 ; \mathrm{Br}, 15.9 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1720 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.32\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 1.78$ ($3 \mathrm{H}, \mathrm{br}, \mathrm{CMe}=\mathrm{CH}_{2}$), $3.67\left(2 \mathrm{H}, \mathrm{br}, \mathrm{ArCH}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.10-4.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CMe}=\mathrm{CH}_{2}\right)$, $4.69-4.70$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CMe}=\mathrm{C} H_{2}\right), 6.87(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{ArH}), 6.88(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH})$ and $7.71(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{ArH})$.

Cyclization of monoallylated compound 57 to naphthol 59. Sodium methoxide prepared from sodium ($92.0 \mathrm{mg}, 4.00 \mathrm{mmol}$) and methanol $\left(2.0 \mathrm{~cm}^{3}\right)$, as mentioned for the preparation of ester $\mathbf{8}$, was suspended in dry HMPA ($2.0 \mathrm{~cm}^{3}$). To the suspension was added compound $57(100 \mathrm{mg}, 199 \mu \mathrm{~mol})$ and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h . After cooling, the mixture was poured into $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(30 \mathrm{~cm}^{3}\right)$ and the resulting mixture was extracted with diethyl ether. The extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a silica gel column with hexane-ethyl acetate (9:1) as the eluent to give naphthol $\mathbf{5 9}(38.8 \mathrm{mg}, 73 \%)$ as crystals, mp $105-106^{\circ} \mathrm{C}$ (lit., ${ }^{27} 100-102^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3327$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 2.47(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.55(1 \mathrm{H}, \mathrm{d}$, $J 8.3, \mathrm{ArH}), 6.80(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.47(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.56(1 \mathrm{H}, \mathrm{d}$, $J 8.3, \mathrm{ArH})$ and $9.31(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

Reaction of bromide 55 with 2-methylprop-2-enylmagnesium bromide in diethyl ether-benzene

A mixture of magnesium turnings (1.26 g), 1,2-dibromoethane
$\left(50 \mathrm{~mm}^{3}\right)$ and diethyl ether $\left(3.0 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 3 h . To the activated magnesium was added dropwise a solution of 3-chloro-2-methylpropene ($680 \mathrm{mg}, 7.51$ $\mathrm{mmol})$ in diethyl ether $\left(7.5 \mathrm{~cm}^{3}\right)$ over a period of 6 h with stirring, while the reaction vessel was cooled in an ice bath. After being stirred for a further 2 h in the ice bath, the mixture was diluted with benzene ($10.5 \mathrm{~cm}^{3}$) and the resulting mixture was added dropwise to a solution of bromide $55(1.44 \mathrm{~g}, 3.00 \mathrm{mmol})$ in benzene $\left(10.5 \mathrm{~cm}^{3}\right)$ over a period of 5 min at room temperature. After the addition, the mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(100 \mathrm{~cm}^{3}\right)$ and the two layers were separated. The aqueous layer was extracted with diethyl ether and the combined organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a silica gel column with hexane-ethyl acetate $(9: 1)$ as the eluent to give diallylated compound 56 ($1.52 \mathrm{~g}, 96 \%$) as an oil (Found: C, 68.1; $\mathrm{H}, 7.3 ; \mathrm{Br}, 15.3 . \mathrm{C}_{30} \mathrm{H}_{39} \mathrm{BrO}_{3}$ requires $\mathrm{C}, 68.3 ; \mathrm{H}, 7.5 ; \mathrm{Br}$, $15.1 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1732 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.30(18 \mathrm{H}, \mathrm{s}$, $\mathrm{Bu}^{t} \times 2$), $1.68\left(3 \mathrm{H}, \mathrm{br}, \mathrm{C} M e=\mathrm{CH}_{2}\right), 1.84\left(3 \mathrm{H}, \mathrm{br}, \mathrm{C} M e=\mathrm{CH}_{2}\right)$, $3.73\left(2 \mathrm{H}, \mathrm{br}, \mathrm{ArCH}_{2}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94(2 \mathrm{H}, \mathrm{br}$, ArCH_{2}), 4.05-4.06 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CMe}=\mathrm{CH}_{2}$), 4.58-4.59 $(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CMe}=\mathrm{CH}_{2}\right), 4.74-4.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CMe}=\mathrm{CH}_{2}\right), 4.89-4.90(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CMe}=\mathrm{CH}_{2}\right), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.16(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH})$ and $7.70(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH})$.

Reaction of monoallylated compound 57 with methyllithium

To a solution of compound $57(503 \mathrm{mg}, 0.999 \mathrm{mmol})$ in dry THF $\left(4.0 \mathrm{~cm}^{3}\right)$ was added dropwise methyllithium (1.05 mol dm^{-3} in diethyl ether; $2.1 \mathrm{~cm}^{3}, 2.21 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to room temperature. After being stirred for 1 h , the mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(30 \mathrm{~cm}^{3}\right)$ and the two layers were separated. The aqueous layer was extracted with diethyl ether and the combined organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a silica gel column with hexane-ethyl acetate $(9: 1)$ as the eluent to give methylated compound $\mathbf{5 8}(350 \mathrm{mg}, 80 \%)$ as crystals, mp 124 $126^{\circ} \mathrm{C}$ (Found: C, 76.7; H, 8.4. $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{4}$ requires C, 76.7 ; H , $8.7 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1717 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.33(18 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t} \times 2\right), 1.73-1.74\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C} M e=\mathrm{CH}_{2}\right), 2.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.52$ ($2 \mathrm{H}, \mathrm{br}, \mathrm{ArCH}_{2}$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.14-$ $4.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CMe}=\mathrm{CH}_{2}\right)$, $4.64-4.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CMe}=\mathrm{CH}_{2}\right), 6.88$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.88(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH})$ and $7.29(1 \mathrm{H}, \mathrm{d}, J 8.1$, ArH).

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (No. 08405058 and No. 10555318).

References

1 Review: T. Hattori and S. Miyano, Yuki Gosei Kagaku Kyokaishi, 1997, 55, 121 (Chem. Abstr., 1997, 126, 199293).
2 Reviews: T. G. Gant and A. I. Meyers, Tetrahedron, 1994, 50, 2297; M. Reuman and A. I. Meyers, Tetrahedron, 1985, 41, 837.

3 Preliminary communication: T. Hattori, N. Koike, T. Satoh and S. Miyano, Tetrahedron Lett., 1995, 36, 4821

4 R. C. Fuson and D. H. Chadwick, J. Org. Chem., 1948, 13, 484; R. C. Fuson, R. Gaertner and D. H. Chadwick, J. Org. Chem., 1948, 13, 489.
5 R. C. Fuson and R. Gaertner, J. Org. Chem., 1948, 13, 496.
6 R. H. Hutchings and A. I. Meyers, J. Org. Chem., 1996, 61, 1004.
7 K. M. Wells, Y. Shi, J. E. Lynch, G. R. Humphrey, R. P. Volante and P. J. Reider, Tetrahedron Lett., 1996, 37, 6439.

8 T. Hattori, T. Suzuki, N. Hayashizaka, N. Koike and S. Miyano, Bull. Chem. Soc. Jpn., 1993, 66, 3034.
9 T. Hattori, N. Koike and S. Miyano, J. Chem. Soc., Perkin Trans. 1, 1994, 2273.
10 T. Hattori, H. Hotta, T. Suzuki and S. Miyano, Bull. Chem. Soc. $J p n ., 1993,66,613$. For extensions of the chelation-assisted $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction to other activating substituents, see: T. Hattori, M. Suzuki, N. Tomita, A. Takeda and S. Miyano, J. Chem. Soc., Perkin Trans. 1, 1997, 1117; T. Hattori, J. Sakamoto, N. Hayashizaka and S. Miyano, Synthesis, 1994, 199
11 N. Koike, T. Hattori, A. Takeda, Y. Okaishi and S. Miyano, Chem. Lett., 1997, 641.
12 R. Häner, T. Laube and D. Seebach, J. Am. Chem. Soc., 1985, 107, 5396; D. Seebach, R. Amstutz, T. Laube, W. B. Schweizer and J. D. Dunitz, J. Am. Chem. Soc., 1985, 107, 5403; K. Tomioka, M. Shindo and K. Koga, J. Org. Chem., 1990, 55, 2276.

13 M. R. Boyd, Y. F. Hallock, J. H. Cardellina II, K. P. Manfredi, J. W. Blunt, J. B. McMahon, R. W. Buckheit Jr., G. Bringmann, M. Schäffer, G. M. Cragg, D. W. Thomas and J. G. Jato, J. Med. Chem., 1994, 37, 1740.
14 Y. F. Hallock, K. P. Manfredi, J. W. Blunt, J. H. Cardellina II, M. Schäffer, K.-P. Gulden, G. Bringmann, A. Y. Lee, J. Clardy, G. François and M. R. Boyd, J. Org. Chem., 1994, 59, 6349; G. Bringmann, R. Zagst, H. Reuscher and L. A. Assi, Phytochemistry, 1992, 31, 4011.
15 T. R. Hoye and L. Mi, J. Org. Chem., 1997, 62, 8586
16 G. Bringmann, R. Götz, P. A. Keller, R. Walter, P. Henschel, M. Schäffer, M. Stäblein, T. R. Kelly and M. R. Boyd, Heterocycles, 1994, 39, 503.
17 T. R. Hoye and L. Mi, Tetrahedron Lett., 1996, 37, 3097; T. Watanabe, K. Kamikawa and M. Uemura, Tetrahedron Lett., 1995, 36, 6695; M. Watanabe, S. Hisamatsu, H. Hotokezaka and S. Furukawa, Chem. Pharm. Bull., 1986, 34, 2810.

18 P. D. Hobbs, V. Upender, J. Liu, D. J. Pollart, D. W. Thomas and M. I. Dawson, Chem. Commun., 1996, 923; B. Tarnchompoo, C. Thebtaranonth and Y. Thebtaranonth, Synthesis, 1986, 785.

19 M. P. Sibi, J. W. Dankwardt and V. Snieckus, J. Org. Chem., 1986, 51, 271.
20 C. D. Hurd and C. N. Webb, J. Am. Chem. Soc., 1936, 58, 941; H. Pudleiner and H. Laatsch, Synthesis, 1989, 286.

21 S. D. Wyrick, F. T. Smith, W. E. Kemp and A. A. Grippo, J. Med. Chem., 1987, 30, 1798
22 I. N.-Duvaz, V. Feyns, V. Savaniu, M. Ionescu, A. Serban and A. Cambanis, Rev. Roum. Chim., 1969, 14, 535.

23 T. Hattori, N. Hayashizaka and S. Miyano, Synthesis, 1995, 41.
24 T. Hattori, T. Satoh and S. Miyano, Synthesis, 1996, 514.
25 T. Hattori, S. Satoh and S. Miyano, Bull. Chem. Soc. Jpn., 1993, 66, 3840.

26 A. I. Meyers, R. Gabel and E. D. Mihelich, J. Org. Chem., 1978, 43, 1372.

27 Z. Horii, M. Hanaoka, S. Kim and Y. Tamura, J. Chem. Soc., 1963, 3940.

Paper 8/07646D

